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2.1. T-S Diagram for a Pure Substance
The entropy of a system is a function of the thermodynamic coordinates whose change

during a process in which the system goes from an equilibrium state i to another

equilibrium state f is equal to

𝑆𝑆𝑓𝑓 − 𝑆𝑆𝑖𝑖 =
𝑅𝑅
�
𝑖𝑖

𝑓𝑓 𝑑𝑑𝑑𝑑
𝑇𝑇

Where the symbol R indicates that the integration is to be performed over any reversible

path connecting i and f.

If the two equilibrium states are infinitesimally close, then,

𝑑𝑑𝑑𝑑 = 𝑇𝑇 𝑑𝑑𝑆𝑆 and  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑇𝑇 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

At constant volume, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑉𝑉

= 𝐶𝐶𝑉𝑉 = 𝑇𝑇 𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑 𝑉𝑉

And at constant pressure, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑃𝑃

= 𝐶𝐶𝑃𝑃 = 𝑇𝑇 𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑 𝑃𝑃
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2.1. T-S Diagram for a Pure Substance

If the temperature variation of 𝐶𝐶𝑉𝑉 is known, the entropy change during an isochoric process

may be calculated from the equation

𝑆𝑆𝑓𝑓 − 𝑆𝑆𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �
𝑖𝑖

𝑓𝑓 𝐶𝐶𝑉𝑉
𝑇𝑇
𝑑𝑑𝑇𝑇

Similarly, for an isobaric process,

𝑆𝑆𝑓𝑓 − 𝑆𝑆𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �
𝑖𝑖

𝑓𝑓 𝐶𝐶𝑃𝑃
𝑇𝑇
𝑑𝑑𝑇𝑇

The above equations provided a general method for calculating an entropy change but no

way of calculating the absolute entropy of a system in a given state. If a set of tables is

required that is to be used to obtain entropy differences and not absolute entropy, then it is

a convenient to choose an arbitrary standard state and calculate the entropy change of the

system from this standard state to all other states. Thus, in the case to all other states. Thus,

in the case of water, the standard state is chosen to be that of saturated water at 0.010C and

its own vapor pressure 4.58 mm, and all entropies are referred to this state.
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2.1. T-S Diagram for a Pure Substance

Fig. 2.1. T-S diagram for CO2. The two dashed lines bounding

the solid-liquid region are a guess.

The T-S diagram for a substance such as CO2 is shown

in fig. 2.1 the curve from A to F is a typical isobar

representing a series of reversible isobaric processes

in which solid is transformed finally into vapor. Thus,

AB = isobaric heating of solid to its melting point

BC = isobaric isothermal melting

CD = isobaric heating of liquid to its boiling point

DE = isobaric isothermal vaporization 

EF = isobaric heating of vapor (superheating)

The area under the line BC represents the heat of fusion at the particular temperature, and

the area under the line DE represents the heat of vaporization. Similarly, the heat of

sublimation is represented by the area under any sublimation line. It is obvious from the

diagram that the heat of vaporization decreases as the temperature rises and becomes zero

at the critical point and also that the heat of sublimation is equal to the sum of the heat of

fusion and the heat of vaporization at the triple point.
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2.2. Gibbs U-V-S Surface

For an infinitesimal process, we have, 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑃𝑃 𝑑𝑑𝑑𝑑

If the process takes place between two neighboring equilibrium states, we may assume it

to be reversible, Hence, 𝑑𝑑𝑑𝑑 = 𝑇𝑇 𝑑𝑑𝑆𝑆 − 𝑃𝑃 𝑑𝑑𝑑𝑑 … (1)

Regarding U as a function of S and V, we may write

𝑑𝑑𝑑𝑑 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑 𝑉𝑉

𝑑𝑑𝑆𝑆 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉 𝑑𝑑

𝑑𝑑𝑑𝑑 ….(2)

Comparing equation (1) and (2) we have

𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑 𝑉𝑉

= 𝑇𝑇, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉 𝑑𝑑

= - P

It is clear from the above that a surface, generated by plotting U, S and V, would

also indicate the temperature and pressure from the two slopes at any given

point. Gibbs was the first to consider such a surface and to point out its

interesting properties. A rough diagram of a U-V-S surface for water is given in

fig. 2.2.
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2.2. Gibbs U-V-S Surface

Fig. 2.2 Gibbs U-V-S surface for water.

Imagine a plane at S = S0 cutting the surface, the

intersection being a particular curve whose equation

involves U and V. The slope of this curve at some point

on the curve, say (U0, V0, S0) is (𝜕𝜕𝑑𝑑/𝜕𝜕𝑑𝑑)0, and the

equation of the line tangent to the curve at this point

is 𝑑𝑑 − 𝑑𝑑0 −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉 0

𝑑𝑑 − 𝑑𝑑0 = 0

Again upon cutting the surface with a plane at V = V0,

curve is obtained the equation of whose tangent line at

the point (U0, V0, S0) is

𝑑𝑑 − 𝑑𝑑0 −
𝜕𝜕𝑑𝑑
𝜕𝜕𝑆𝑆

0
𝑆𝑆 − 𝑆𝑆0 = 0

Now the plane that is tangent to the surface at the point (U0, V0, S0) contains these two

intersecting tangents lines. Therefore the equation of the plane tangent to the surface at

the point (U0, V0, S0) is

𝑑𝑑 − 𝑑𝑑0 −
𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑 0

𝑑𝑑 − 𝑑𝑑0 −
𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑 0

𝑆𝑆 − 𝑆𝑆0 = 0
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2.2. Gibbs U-V-S Surface

Calling P0 and T0 the pressure and temperature, respectively, at the point in question we

have 𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉 0

= − 𝑃𝑃0 & 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑 0

= 𝑇𝑇0

And the equation of the tangent plane becomes, U – U0 + P0 (V – V0) – T0 (S – S0) = 0

Consequently, the P and T of a point determine uniquely a tangent plane at the point. If two different points on the

surface therefore refer to the same pressure and temperature, they must both touch the same tangent plane.

Further, if P and T are constant along a curve, this whole curve touches the tangent plane and is therefore a straight

line. An isothermal isobaric vaporization must therefore be a straight line. Since the whole liquid vapor region is

constructed of such lines, it is a ruled surface. The same is also true of the other two mixture regions. Since all

proportions of sold, liquid, and vapor exist at the same pressure and temperature, it is clear that the tangent plane

determined by this P and T must touch all these points or in other words, the triple point on a U-V-S surface is a plane

triangle. A tangent plane touches the surface in the solid region or the vapor region or the liquid region at only one

point.

It should be emphasized that the surface depicted qualitatively in fig. 2.2 represents only equilibrium states of water. 

The original surface anticipated by Gibbs included metastable states such as those corresponding to supercooled vapor 

and supercooled liquid. A model showing these metastable states was first made by Maxwell during Gibbs’s lifetime and 

was presented to him.
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2.3. Enthalpy

The enthalpy of a system is defined as 𝐻𝐻 = 𝑑𝑑 + 𝑃𝑃 𝑑𝑑

In order to study the properties of this function, consider the change in enthalpy that

takes place when a system undergoes an infinitesimal process from an initial equilibrium

state to a final equilibrium state. We have 𝑑𝑑𝐻𝐻 = 𝑑𝑑𝑑𝑑 + 𝑃𝑃 𝑑𝑑𝑑𝑑 + 𝑑𝑑 𝑑𝑑𝑃𝑃

But 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 + 𝑃𝑃 𝑑𝑑 Therefore, 𝑑𝑑𝐻𝐻 = 𝑑𝑑𝑑𝑑 + 𝑑𝑑 𝑑𝑑𝑃𝑃

Dividing both sides by 𝑑𝑑𝑇𝑇, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑑𝑑 𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

and, at constant P, 𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑 𝑃𝑃

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑃𝑃

= 𝐶𝐶𝑃𝑃 𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 1

Since, 

dH = dQ + V dP,

The change in enthalpy during an isobaric process is equal to the heat

transferred. That is,

𝐻𝐻𝑓𝑓 − 𝐻𝐻𝑖𝑖 = 𝑑𝑑

Or (Isobaric) (property (2)]

𝐻𝐻𝑓𝑓 − 𝐻𝐻𝑖𝑖 = ∫𝑖𝑖
𝑓𝑓 𝐶𝐶𝑃𝑃 𝑑𝑑𝑇𝑇
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2.3. Enthalpy

Since isobaric processes are much more important in engineering and

chemistry than isochoric processes, the enthalpy is of greatest use in

these branches of science.

The change in enthalpy of a system undergoing an adiabatic process has

an interesting graphical interpretation. Since

𝑑𝑑𝐻𝐻 = 𝑑𝑑𝑑𝑑 + 𝑑𝑑 𝑑𝑑𝑃𝑃,

Then for an adiabatic process

𝐻𝐻𝑓𝑓 − 𝐻𝐻𝑖𝑖 = ∫𝑖𝑖
𝑓𝑓 𝑑𝑑 𝑑𝑑𝑃𝑃 (adiabatic)   [Property (3)]

The above integral represents the area to the left of an adiabatic curve 

on a P-V diagram. This area does not represent work.
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2.3. Enthalpy

Fig. 2.3. Throttling process.

One of the most interesting properties of the enthalpy

function is in connection with a throttling process. Imagine

a cylinder thermally insulated and equipped with two non-

conducting pistons on opposite sides of a porous wall, as

shown in fig 2.3(i). The wall shaded in horizontal lines, is a

porous plug, a narrow constriction, or a series of small

holes. Between the left hand piston and the wall there is a

gas at a pressure Pi and a volume Vi;

and since the right hand piston is against the wall, any gas being thus prevented from seeping

through, the initial state of the gas is an equilibrium state. Now imagine moving both pistons

simultaneously in such a way that a constant pressure Pi is maintained on the left hand side of the wall

and a constant lower pressure Pf is maintained on the right hand side. After all the gas has seeped

through the porous wall, the final equilibrium state of the system will be as shown in fig. 2.3(f). Such a

process is a throttling process.

A throttling process is obviously an irreversible one since the gas passes through non-

equilibrium states on its way from the initial equilibrium state to its final equilibrium state.
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2.3. Enthalpy

non-equilibrium states cannot be described by thermodynamic coordinates, but an interesting

conclusion can be drawn about the initial and final equilibrium states. Applying the first law to the

throttling process

𝑑𝑑 = 𝑑𝑑𝑓𝑓 − 𝑑𝑑𝑖𝑖 + 𝑊𝑊

We have 𝑑𝑑 = 0

And

𝑊𝑊 = �
0

𝑉𝑉𝑓𝑓
𝑝𝑝 𝑑𝑑𝑑𝑑 + �

𝑉𝑉𝑖𝑖

0
𝑃𝑃 𝑑𝑑𝑑𝑑

Since both pressures remain constant

𝑊𝑊 = 𝑃𝑃𝑓𝑓𝑑𝑑𝑓𝑓 − 𝑃𝑃𝑖𝑖𝑑𝑑𝑖𝑖
The above expression is known in engineering as flow work, since it represents the work necessary to keep

the gas flowing. Therefore,

0 − 𝑑𝑑𝑓𝑓 − 𝑑𝑑𝑖𝑖 + 𝑃𝑃𝑓𝑓𝑑𝑑𝑓𝑓 − 𝑃𝑃𝑖𝑖𝑑𝑑𝑖𝑖

Or 𝑑𝑑𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑓𝑓 + 𝑃𝑃𝑓𝑓𝑑𝑑𝑓𝑓
and finally

𝐻𝐻𝑖𝑖 = 𝐻𝐻𝑓𝑓 (Throttling process) [property (4)]
In a throttling process therefore, the initial and final enthalpies are equal.
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2.3. Enthalpy

One is not entitled to say that the enthalpy remains constant since one cannot speak of the enthalpy of a

system that is passing through such nonequlibrium states.

In plotting a throttling process on any diagram the initial and final equilibrium states may be

represented by points. The intermediate states, however, cannot be plotted.

A continuous throttling process may be achieved by a pump that maintain a constant high

pressure on one side of a constriction or porous wall and a constant lower pressure on the other side as

shown in fig. 2.4. For every unit of mass that undergoes the throttling process we may write.

𝑖𝑖𝑖 = 𝑖𝑓𝑓
Where the lower case letters indicate specific enthalpy.

Fig. 2.4. Apparatus for performing continuous throttling process.
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2.3. Enthalpy

Table 2.1 comparison of U and H

Internal energy U Enthalpy H
In general

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑑𝑑 , 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑 𝑉𝑉

= 𝐶𝐶𝑉𝑉

In general

𝑑𝑑𝐻𝐻 = 𝑑𝑑𝑑𝑑 + 𝑑𝑑 𝑑𝑑𝑃𝑃, 𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑 𝑃𝑃

= 𝐶𝐶𝑃𝑃

Isochoric Process

𝑑𝑑𝑓𝑓 − 𝑑𝑑𝑖𝑖 = 𝑑𝑑

𝑑𝑑𝑓𝑓 − 𝑑𝑑𝑖𝑖 = �
𝑖𝑖

𝑓𝑓
𝐶𝐶𝑣𝑣 𝑑𝑑𝑇𝑇

Isobaric Process

𝐻𝐻𝑓𝑓 − 𝐻𝐻𝑖𝑖 = 𝑑𝑑

𝐻𝐻𝑓𝑓 − 𝐻𝐻𝑖𝑖 = �
𝑖𝑖

𝑓𝑓
𝐶𝐶𝑃𝑃 𝑑𝑑𝑇𝑇

Adiabatic Process, 𝑑𝑑𝑓𝑓 − 𝑑𝑑𝑖𝑖 = ∫𝑖𝑖
𝑓𝑓 𝑃𝑃 𝑑𝑑𝑑𝑑 Adiabatic Process , 𝐻𝐻𝑓𝑓 − 𝐻𝐻𝑖𝑖 = ∫𝑖𝑖

𝑓𝑓 𝑑𝑑 𝑑𝑑𝑃𝑃

Free Expansion, 𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑓𝑓 Throttling process, 𝐻𝐻𝑖𝑖 = 𝐻𝐻𝑓𝑓

For an ideal gas, 𝑑𝑑 = ∫𝐶𝐶𝑉𝑉 𝑑𝑑𝑇𝑇 +

𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖𝑝𝑝

For an ideal gas, 𝐻𝐻 = ∫𝐶𝐶𝑃𝑃 𝑑𝑑𝑇𝑇 + 𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖𝑝𝑝



Prof. J. K
. Baria

14

2.4. Helmholtz Function.

The Helmholtz function is defined as,

𝐴𝐴 = 𝑑𝑑 − 𝑇𝑇𝑆𝑆

For an infinitesimal reversible process,

𝑑𝑑𝐴𝐴 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑆𝑆 − 𝑆𝑆𝑑𝑑𝑇𝑇,

and 𝑇𝑇𝑑𝑑𝑆𝑆 = 𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑑𝑑𝑑𝑑

Hence, 𝑑𝑑𝐴𝐴 = −𝑃𝑃𝑑𝑑𝑑𝑑 − 𝑆𝑆𝑑𝑑𝑇𝑇
From this it follows: 

(1) For a reversible isothermal process.

𝑑𝑑𝐴𝐴 = −𝑃𝑃𝑑𝑑𝑑𝑑

or

𝐴𝐴𝑓𝑓 − 𝐴𝐴𝑖𝑖 = �
𝑖𝑖

𝑓𝑓
𝑃𝑃 𝑑𝑑𝑑𝑑

Hence the change of the Helmholtz function during a reversible isothermal

process equals the work done on the system.
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(2) For a reversible isothermal and isochoric process
𝑑𝑑𝐴𝐴 = −𝑃𝑃𝑑𝑑𝑑𝑑

or
𝐴𝐴 = 𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑝𝑝𝑖𝑖𝐶𝐶𝑝𝑝

These properties are of interest in chemistry and are useful in
considering chemical reactions that take place isothermally and
isochorically. The main importance, however, of the Helmholtz
function is its use in statistical mechanics, where it plays a
fundamental role. It is possible by statistical methods to calculate the
Helmholtz function of some substances as a function of T and V. The
equation of state of a substance is then obtained from the
relationship.

𝑃𝑃 = −
𝜕𝜕𝐴𝐴
𝜕𝜕𝑑𝑑 𝑑𝑑

And the entropy from

𝑆𝑆 = −
𝜕𝜕𝐴𝐴
𝜕𝜕𝑇𝑇 𝑉𝑉

2.4. Helmholtz Function.
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2.5. Gibbs Function

The Gibbs function is defined as

𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑆𝑆

For an infinitesimal reversible process,

𝑑𝑑𝐺𝐺 = 𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑆𝑆 − 𝑆𝑆𝑑𝑑𝑇𝑇

It will be recalled, however, that

𝑑𝑑𝐻𝐻 = 𝑇𝑇 𝑑𝑑𝑆𝑆 + 𝑑𝑑 𝑑𝑑𝑃𝑃,

Whence 𝑑𝑑𝐺𝐺 = 𝑑𝑑𝑑𝑑𝑃𝑃 − 𝑆𝑆𝑑𝑑𝑇𝑇

In the case of a reversible, isothermal,

isobaric process

𝑑𝑑𝐺𝐺 = 0

and 𝐺𝐺 = 𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑝𝑝𝑖𝑖𝐶𝐶𝑝𝑝
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2.5. Gibbs Function

This is a particularly important result in connection with processes involving a change of phase.

Sublimation, fusion, and vaporization take place isothermally and isobarically and can be conceived of

as occurring reversibly. Hence, during such processes, the Gibbs function of the system remains constant.

If we denote by the symbols 𝑔𝑔′, 𝑔𝑔′′, and 𝑔𝑔′′′ the molar Gibbs function of a saturated solid, saturated

liquid, and saturated vapor, respectively,

then the equation of the fusion curve is

𝑔𝑔′ = 𝑔𝑔′′

the equation of the vaporization curve is

𝑔𝑔′′ = 𝑔𝑔′′′,

and the equation of the sublimation curve is

𝑔𝑔′ = 𝑔𝑔′′′

At the triple point two equations hold simultaneously namely,

𝑔𝑔′ = 𝑔𝑔′′ = 𝑔𝑔′′′

All the 𝑔𝑔′s can be regarded as functions of P and T only, and hence the two equations above serve to

determine the P and the T of the triple point uniquely.

The Gibbs function is of the utmost importance in chemistry since chemical reactions can be

conceived of as taking place at constant P and T. It is also of some use in engineering.
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2.6. Names and Symbols for the Thermodynamic Functions

There are many different names and symbols for the thermodynamic functions and

therefore unification of symbol of thermodynamic functions are essential.

Practically all authors of modern textbooks are agreed upon the name entropy and the

symbol S.

For the internal energy function both E and U are used. Since neither E nor U is ever used

to designate any other function, there is no objection in retaining these two letters as

alternate symbols.

The symbol for enthalpy is almost invariably H, but there are three other names that are

widely used: heat content, total heat and heat function.

The word “heat” is objectionable for two reasons

(1) The beginner is suitable to receive the erroneous impression that heat in general is a

function or that a body has a certain amount of heat in it.

(2) The change in enthalpy is the heat transferred only for an isobaric process. If, for this

reason, the enthalpy is called the “heat function at constant pressure”, then to be

consistent, we should have to call U the “heat function for constant volume”.
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2.6. Names and Symbols for the Thermodynamic Functions

Since, however, the process, we should then have as an alternative name for internal energy

is equal to work done in an adiabatic process, we should then have as an alternative name

for internal energy the “adiabatic work function”. Although the idea of assigning to a

function a name that suggests a property of the function is an appealing one, the fact

remains that the thermodynamic functions have many properties, and it is not satisfactory

to choose one property for the purpose of nomenclature.

The situation with regard to the Helmholtz and Gibbs functions is really serious 

and has let to great confusion and error in calculations, as is shown in the accompanying 

table.

Helmholtz function Gibbs function
Most American chemists…

Many physicists…

Compromise suggested by

several symbols

committees

Work function A

Free energy F

Helmholtz function A

Free Energy F

Thermodynamic Potential G

Gibbs function G
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2.7. Two Mathematical Theorems
Theorem 1. If a relation exists among 𝑥𝑥, 𝑝𝑝 and 𝑧𝑧, we may imagine 𝑧𝑧 expressed as a function of 𝑥𝑥 and

𝑝𝑝; hence,

𝑑𝑑𝑧𝑧 =
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

𝑦𝑦
𝑑𝑑𝑥𝑥 +

𝑑𝑑𝑧𝑧
𝑑𝑑𝑝𝑝

𝑧𝑧
𝑑𝑑𝑝𝑝

If we let, 𝑀𝑀 = 𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑 𝑦𝑦

𝑖𝑖𝐶𝐶𝑑𝑑 𝑁𝑁 = 𝑑𝑑𝑧𝑧
𝑑𝑑𝑦𝑦 𝑧𝑧

Then, 𝑑𝑑𝑧𝑧 = 𝑀𝑀𝑑𝑑𝑥𝑥 + 𝑁𝑁𝑑𝑑𝑝𝑝

Where, 𝑧𝑧, 𝑀𝑀 and 𝑁𝑁 are all functions of 𝑥𝑥 and 𝑝𝑝. Differentiating M partially with respect to 𝑝𝑝 and 𝑁𝑁

with respect to 𝑥𝑥, we get

𝜕𝜕𝑀𝑀
𝜕𝜕𝑝𝑝

𝑑𝑑
=

𝜕𝜕2𝑧𝑧
𝑑𝑑𝑥𝑥 𝜕𝜕𝑝𝑝

𝜕𝜕𝑀𝑀
𝜕𝜕𝑝𝑝

𝑦𝑦
=

𝜕𝜕2𝑧𝑧
𝑑𝑑𝑝𝑝 𝜕𝜕𝑥𝑥

Since the two second derivatives on the right are equal, it follows that

𝜕𝜕𝑀𝑀
𝜕𝜕𝑝𝑝

𝑑𝑑
=

𝜕𝜕𝑁𝑁
𝜕𝜕𝑧𝑧

𝑦𝑦

This is known as the condition for an exact differential.



Prof. J. K
. Baria

21

2.7. Two Mathematical Theorems

Theorem 2. If a quantity f is a function of 𝑥𝑥, 𝑝𝑝 and 𝑧𝑧 and a relation exists among 𝑥𝑥, 𝑝𝑝 and 𝑧𝑧, then f may

be regarded as a function of any two of 𝑥𝑥, 𝑝𝑝 and 𝑧𝑧. Similarly any one of 𝑥𝑥, 𝑝𝑝 and 𝑧𝑧 may be considered to

be a function of f and one other of 𝑥𝑥, 𝑝𝑝 and 𝑧𝑧. Thus, regarding 𝑥𝑥 to be a function of f and y.

𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑓𝑓 𝑦𝑦

𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦 𝑓𝑓

𝑑𝑑𝑝𝑝 …(1)

Considering 𝑝𝑝 to be a function of f and 𝑧𝑧

𝑑𝑑𝑝𝑝 = 𝑑𝑑𝑦𝑦
𝑑𝑑𝑓𝑓 𝑧𝑧

𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑦𝑦
𝑑𝑑𝑧𝑧 𝑓𝑓

𝑑𝑑𝑧𝑧 …(2)

Substituting this expression for 𝑑𝑑𝑝𝑝 in the equation (1), we get

𝑑𝑑𝑥𝑥 =
𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

𝑦𝑦
+

𝑑𝑑𝑥𝑥
𝑑𝑑𝑝𝑝

𝑓𝑓

𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

𝑧𝑧
𝑑𝑑𝑑𝑑 +

𝜕𝜕𝑥𝑥
𝜕𝜕𝑝𝑝

𝑓𝑓

𝜕𝜕𝑝𝑝
𝜕𝜕𝑧𝑧

𝑓𝑓 𝑦𝑦

𝑑𝑑𝑧𝑧

But   𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑓𝑓 𝑧𝑧

𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧 𝑓𝑓

𝑑𝑑𝑧𝑧

Equating the 𝑑𝑑𝑧𝑧 terms of the last two equations, we get,

𝜕𝜕𝑑𝑑
𝜕𝜕𝑦𝑦 𝑓𝑓

𝑑𝑑𝑦𝑦
𝑑𝑑𝑧𝑧 𝑓𝑓

= 𝜕𝜕𝑑𝑑
𝜕𝜕𝑦𝑦 𝑓𝑓

𝜕𝜕𝑑𝑑
𝜕𝜕𝑦𝑦 𝑓𝑓

𝜕𝜕𝑦𝑦
𝜕𝜕𝑧𝑧 𝑓𝑓

𝜕𝜕𝑧𝑧
𝜕𝜕𝑑𝑑 𝑓𝑓

= 1
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2.8. Maxwell’s Equations

A chemical system has been defined as any system of constant mass whose equilibrium

states are describable by the 3 thermodynamic coordinates P, V, and T. In describing the

behavior of such a system it is convenient to make use of the four functions.

1. The internal energy 𝑑𝑑.

2. The enthalpy 𝐻𝐻 = 𝑑𝑑 + 𝑃𝑃𝑑𝑑.

3. The Helmholtz function 𝐴𝐴 = 𝑑𝑑 − 𝑇𝑇𝑆𝑆.

4. The Gibbs function 𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑆𝑆.

Any one of these may be regarded as a function of any two of P, V, and T. Suppose for

example the both U and S are expressed as functions of V and T, thus.

𝑑𝑑 = function of (V, T)

And 𝑆𝑆 = function of (V, T)

The second equation may be imagined to be solved for T in terms of S and V; substituting

this value of T in the first equation, we should then have

𝑑𝑑 = function of (S, V)

Consequently we may go further and say that any one of the eight qualities P, V, T, S, U, H, A,

and G may be expressed as a function of any two others.
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2.8. Maxwell’s Equations
Now imagine a chemical system undergoing an infinitesimal reversible process from one equilibrium state to another.

1. The internal energy changes by an amount

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑆𝑆 − 𝑃𝑃𝑑𝑑𝑑𝑑

Where U, T and P are all imagined to be functions of S and V.

2. The enthalpy changes by an amounts

𝑑𝑑𝐻𝐻 = 𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑𝑃𝑃 = 𝑇𝑇𝑑𝑑𝑆𝑆 + 𝑑𝑑𝑑𝑑𝑃𝑃

Where H, T, and V are all imagined to be functions of S and P.

3. The Helmholtz function changes by an amount

𝑑𝑑𝐴𝐴 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑆𝑆 − 𝑆𝑆𝑑𝑑𝑇𝑇 = −𝑃𝑃𝑑𝑑𝑑𝑑 − 𝑆𝑆𝑑𝑑𝑇𝑇
Where  A, P, and S are all imagined to be functions of V and T. 

4. The Gibbs function changes by an amount

𝑑𝑑𝐺𝐺 = 𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑆𝑆 − 𝑆𝑆𝑑𝑑𝑇𝑇 = 𝑑𝑑𝑑𝑑𝑃𝑃 − 𝑆𝑆𝑑𝑑𝑇𝑇

Where G, V and S are all imagined to be function of P and T.

Since U, H, A, and G are actual functions, their differentials are exact differentials of the type

𝑑𝑑𝑧𝑧 = 𝑀𝑀𝑑𝑑𝑥𝑥 + 𝑁𝑁𝑑𝑑𝑝𝑝

where 𝑧𝑧, 𝑀𝑀, and 𝑁𝑁 are all functions of 𝑥𝑥 and 𝑝𝑝. Therefore

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦 𝑑𝑑

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑 𝑦𝑦

Applying this result to the four exact differentials 𝑑𝑑𝑑𝑑, 𝑑𝑑𝐻𝐻, 𝑑𝑑𝐴𝐴, and 𝑑𝑑𝐺𝐺
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2.8. Maxwell’s Equations

𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑆𝑆 − 𝑃𝑃𝑑𝑑𝑑𝑑 Hence, 𝜕𝜕𝑇𝑇
𝜕𝜕𝑑𝑑 𝑑𝑑

=
𝜕𝜕𝑃𝑃
𝜕𝜕𝑆𝑆 𝑉𝑉 …(1)

𝑑𝑑𝐻𝐻 = 𝑇𝑇𝑑𝑑𝑆𝑆 + 𝑑𝑑𝑑𝑑𝑃𝑃 Hence, 𝜕𝜕𝑇𝑇
𝜕𝜕𝑃𝑃 𝑑𝑑

=
𝜕𝜕𝑑𝑑
𝜕𝜕𝑆𝑆 𝑃𝑃 …(2)

𝑑𝑑𝐴𝐴 = −𝑃𝑃𝑑𝑑𝑑𝑑 − 𝑆𝑆𝑑𝑑𝑇𝑇 Hence, 𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇 𝑉𝑉

=
𝜕𝜕𝑆𝑆
𝜕𝜕𝑑𝑑 𝑑𝑑 …(3)

𝑑𝑑𝐺𝐺 = 𝑑𝑑𝑑𝑑𝑃𝑃 − 𝑆𝑆𝑑𝑑𝑇𝑇 Hence, 𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝑃𝑃

= −
𝜕𝜕𝑆𝑆
𝜕𝜕𝑃𝑃 𝑑𝑑 …(4)

The four equations on the right are known as Maxwell’s equations. Maxwell’s

equations do not refer to a process but merely express relations that hold at any

equilibrium of a chemical system.
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2.9. First 𝑻𝑻𝑻𝑻𝑻𝑻 Equation.
The entropy of a chemical system can be imagined as a function of T and V;

hence,

𝑑𝑑𝑆𝑆 = 𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑 𝑉𝑉

𝑑𝑑𝑇𝑇 + 𝜕𝜕𝑑𝑑
𝜕𝜕𝑉𝑉 𝑑𝑑

𝑑𝑑𝑑𝑑

and 

𝑇𝑇𝑑𝑑𝑆𝑆 = 𝑇𝑇
𝜕𝜕𝑆𝑆
𝜕𝜕𝑇𝑇 𝑉𝑉

𝑑𝑑𝑇𝑇 + 𝑇𝑇
𝜕𝜕𝑆𝑆
𝜕𝜕𝑑𝑑 𝑑𝑑

𝑑𝑑𝑑𝑑

But 

𝑇𝑇 𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑 𝑉𝑉

= 𝐶𝐶𝑉𝑉; And from Maxwell’s third equation, 𝜕𝜕𝑑𝑑
𝜕𝜕𝑉𝑉 𝑑𝑑

= 𝜕𝜕𝑃𝑃
𝜕𝜕𝑑𝑑 𝑉𝑉

Hence, 

𝑇𝑇𝑑𝑑𝑆𝑆 = 𝐶𝐶𝑉𝑉 𝑑𝑑𝑇𝑇 + 𝑇𝑇
𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇 𝑉𝑉

𝑑𝑑𝑑𝑑

We shall call the above equation the first 𝑇𝑇𝑑𝑑𝑆𝑆 equation. It is useful in a variety 
of ways. 
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2.9. First 𝑻𝑻𝑻𝑻𝑻𝑻 Equation.

For example, 1 mole of a van der Waals gas undergoes a reversible isothermal expansion

from a volume vi to a volume vf. How much heat has been transferred?

For 1 mole

𝑇𝑇𝑑𝑑𝑆𝑆 = 𝐶𝐶𝑉𝑉 𝑑𝑑𝑇𝑇 + 𝑇𝑇 𝜕𝜕𝑃𝑃
𝜕𝜕𝑑𝑑 𝑉𝑉

𝑑𝑑𝑑𝑑

Using the van der Waals equation of state

𝑃𝑃 = 𝑅𝑅𝑑𝑑
𝑣𝑣−𝑏𝑏

− 𝑎𝑎
𝑣𝑣2

And 𝜕𝜕𝑃𝑃
𝜕𝜕𝑑𝑑 𝑉𝑉

= 𝑅𝑅
𝑣𝑣−𝑏𝑏

Hence, 𝑇𝑇𝑑𝑑𝑆𝑆 = 𝐶𝐶𝑉𝑉 𝑑𝑑𝑇𝑇 + 𝑅𝑅𝑇𝑇 𝑑𝑑𝑣𝑣
𝑣𝑣−𝑏𝑏

Since T is consent, 𝐶𝐶𝑉𝑉 𝑑𝑑𝑇𝑇 = 0 and, since the process is reversible 𝑞𝑞 = ∫𝑇𝑇𝑑𝑑𝑆𝑆

𝑞𝑞 = 𝑅𝑅𝑇𝑇 �
𝑣𝑣𝑖𝑖

𝑣𝑣𝑓𝑓 𝑑𝑑𝑑𝑑
𝑑𝑑 − 𝑖𝑖

And finally,

𝑞𝑞 = 𝑅𝑅𝑇𝑇 ln
𝑑𝑑𝑓𝑓 − 𝑖𝑖
𝑑𝑑𝑖𝑖 − 𝑖𝑖



Prof. J. K
. Baria

27

2.10. Second 𝑻𝑻𝑻𝑻𝑻𝑻 equation.

If the entropy of a chemical system is regarded as a function of T and P, then

𝑑𝑑𝑆𝑆 =
𝜕𝜕𝑆𝑆
𝜕𝜕𝑇𝑇 𝑃𝑃

𝑑𝑑𝑇𝑇 +
𝜕𝜕𝑆𝑆
𝜕𝜕𝑇𝑇 𝑃𝑃

𝑑𝑑𝑃𝑃

And 𝑇𝑇 𝑑𝑑𝑆𝑆 = 𝑇𝑇 𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑 𝑃𝑃

𝑑𝑑𝑇𝑇 + 𝑇𝑇 𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃 𝑑𝑑

𝑑𝑑𝑃𝑃,    

But 𝑇𝑇 𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑 𝑃𝑃

= 𝐶𝐶𝑃𝑃

And from Maxwell’s fourth equation 𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃 𝑑𝑑

= − 𝜕𝜕𝑉𝑉
𝜕𝜕𝑑𝑑 𝑃𝑃

𝑇𝑇𝑑𝑑𝑆𝑆 = 𝐶𝐶𝑃𝑃 𝑑𝑑𝑇𝑇 − 𝑇𝑇
𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝑃𝑃

𝑑𝑑𝑃𝑃

We shall call the above equation the second 𝑇𝑇𝑑𝑑𝑆𝑆 equation.

It’s two important applications are,
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2.10. Second 𝑻𝑻𝑻𝑻𝑻𝑻 equation.
1. Reversible isothermal change of pressure. When T is constant

𝑇𝑇𝑑𝑑𝑆𝑆 = −𝑇𝑇 𝜕𝜕𝑉𝑉
𝜕𝜕𝑑𝑑 𝑃𝑃

𝑑𝑑𝑃𝑃 and 𝑑𝑑 − 𝑇𝑇 ∫ 𝜕𝜕𝑉𝑉
𝜕𝜕𝑑𝑑 𝑃𝑃

𝑑𝑑𝑃𝑃

Remembering that the coefficient of volume expansion is

𝛽𝛽 = 1
𝑉𝑉

𝜕𝜕𝑉𝑉
𝜕𝜕𝑑𝑑 𝑃𝑃

We obtain 𝑑𝑑 = −𝑇𝑇 ∫𝑑𝑑𝛽𝛽 𝑑𝑑𝑃𝑃,

Which can be integrated when the dependence of V and β on the pressure is known. In the case of a

solid or liquid, neither V nor β is very sensitive to a change in pressure. For example in the case of

mercury, Bridgman found that as the pressure was increased from zero to 1000 atm at 00C the volume

of 1 mole of mercury changed from 14.72 to 14.67 cm3, a change of only 1/3 percent and the volume

expansivity changed from 181 x 10-6 deg-1 to 174 x 10-6 deg-1
, a 4 % change. The volume and the

expansivity of most solids and liquids behave similarly, and therefore V and β may be taken out from

the integral sign and replaced by average values 𝑑𝑑 and β. We have then

and 𝑑𝑑 = −𝑇𝑇𝑑𝑑β ∫𝑝𝑝𝑖𝑖
𝑝𝑝𝑓𝑓 𝑑𝑑𝑃𝑃 , Or 𝑑𝑑 = −𝑇𝑇𝑑𝑑 � 𝑃𝑃𝑓𝑓 − 𝑃𝑃𝑖𝑖 ,

It is seen from this result that, as the pressure is increased isothermally, heat will flow out of β is 

positive but, for a substance with a negative expansivity (such as water between 0 and 40C) an 

isothermal increase of pressure causes an absorption of heat.
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2.10. Second 𝑻𝑻𝑻𝑻𝑻𝑻 equation.

If the pressure on 1 mole of mercury at 00C is increased reversibly and isothermally from zero to 1000

atm, the heat transferred will be

𝑑𝑑 = −𝑇𝑇𝑑𝑑 � 𝑃𝑃𝑓𝑓 − 𝑃𝑃𝑖𝑖
Where T = 273 deg ; V = 14.7 cm3/mole ; β = 178 x 10-6 deg-1 ;𝑃𝑃𝑖𝑖 = 0

𝑑𝑑 = −
273 deg 𝑋𝑋 14.7 𝑐𝑐𝑐𝑐

3

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚178𝑋𝑋10
−6 deg−1 X 1.013 X 109 dynes/Cm2

419 𝑋𝑋 10𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑚𝑚
= −17.3 𝑐𝑐𝑎𝑎𝑐𝑐

𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚

It is interesting to compare the heat liberated with the work done during the compression.

𝑤𝑤 = �𝑃𝑃 𝑑𝑑𝑑𝑑;

but at constant temperature

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑉𝑉
𝜕𝜕𝑃𝑃 𝑑𝑑

𝑑𝑑𝑃𝑃 And  𝑤𝑤 = ∫ 𝑑𝑑𝑉𝑉
𝜕𝜕𝑃𝑃 𝑑𝑑

𝑃𝑃 𝑑𝑑𝑃𝑃

Remembering that the isothermal compressibility (Reciprocal of isothermal bulk modulus) is

𝑘𝑘 = −
1
𝑑𝑑

𝑑𝑑𝑑𝑑
𝜕𝜕𝑃𝑃 𝑑𝑑

,

then 𝑤𝑤 = −∫𝑝𝑝𝑖𝑖
𝑝𝑝𝑓𝑓 𝑑𝑑𝑘𝑘𝑃𝑃 𝑑𝑑𝑃𝑃
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2.10. Second 𝑻𝑻𝑻𝑻𝑻𝑻 equation.

The isothermal compressibility is also fairly insensitive to a change of pressure. Bridgman showed that

the compressibility of mercury at 00C changed from 3.88 x 10-12 to 3.79 x 10-12 cm2/dyne (a 2 %

change) as the pressure was increased from zero to 1000 atm. We may therefore again replace V and k

by average values and obtain

𝑤𝑤 = −𝑣𝑣𝑣𝑣
2

𝑃𝑃𝑓𝑓2 − 𝑃𝑃𝑖𝑖2 ; and taking for mercury : k = 3.84 x 10-12 cm2/ dyne

we get,

𝑤𝑤 =
14.7 cm

3

mole 𝑋𝑋 3.84 X 10−12 cm
2

dyne X (1.01)2 x 1018 dynes
𝑐𝑐𝑐𝑐2

2

2x 4.19 x 107ergscal
= −0.687 𝑐𝑐𝑎𝑎𝑐𝑐

𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚

It is seen, therefore that, when the pressure on a mole of mercury at 00C is increased from zero to 1000

atm, 17.3 cal of heat is liberated but only 0.687 cal of work is done! The extra amount of heat comes, of

course, from the store of internal energy, which has changed by an amount.

𝑢𝑢𝑓𝑓 − 𝑢𝑢𝑖𝑖 = 𝑑𝑑 − 𝑤𝑤

𝑢𝑢𝑓𝑓 − 𝑢𝑢𝑖𝑖 = 17.3
𝑖𝑖𝑖𝑖𝑐𝑐
𝑚𝑚𝑖𝑖𝑐𝑐𝑝𝑝 + 0.687

𝑖𝑖𝑖𝑖𝑐𝑐
𝑚𝑚𝑖𝑖𝑐𝑐𝑝𝑝 = −16.6

𝑖𝑖𝑖𝑖𝑐𝑐
𝑚𝑚𝑖𝑖𝑐𝑐𝑝𝑝

A similar result is resulted in the case of any substance with a positive expansivitiy. For a substance 
with a negative expansivity, heat is absorbed and the internal energy is increased.
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2.10. Second 𝑻𝑻𝑻𝑻𝑻𝑻 equation.

2. Reversible Adiabatic Change of Pressure. Since the entropy remains constant.

𝑇𝑇𝑑𝑑𝑆𝑆 = 0 = 𝐶𝐶𝑃𝑃 𝑑𝑑𝑇𝑇 − 𝑇𝑇 𝜕𝜕𝑉𝑉
𝜕𝜕𝑑𝑑 𝑃𝑃

𝑑𝑑𝑃𝑃 Or 𝑑𝑑𝑇𝑇 = 𝑑𝑑
𝐶𝐶𝑃𝑃

𝜕𝜕𝑉𝑉
𝜕𝜕𝑑𝑑 𝑃𝑃

𝑑𝑑𝑃𝑃 = 𝑑𝑑𝑉𝑉𝑇𝑇
𝐶𝐶𝑃𝑃

𝑑𝑑𝑃𝑃

In the case of a solid or liquid an increase of pressure of as much as 1000 atm

produces only a small temperature change. Also experiment shows that CP

hardly changes even for an increase of 10,000 atm. The above equation,

therefore when applied to a solid or a liquid may be written

∆𝑇𝑇 = 𝑑𝑑𝑉𝑉𝑇𝑇
𝐶𝐶𝑝𝑝

𝑃𝑃𝑓𝑓 − 𝑃𝑃𝑖𝑖

Where cP is 6.69 cal/mole.deg. Hence,

∆𝑇𝑇 =
273 deg𝑋𝑋 14.7 𝑖𝑖𝑚𝑚3

𝑚𝑚𝑖𝑖𝑐𝑐𝑝𝑝 X 178 X10−6 𝑑𝑑𝑝𝑝𝑔𝑔−1 𝑋𝑋 1.013 x 109 dynes
cm2

6.69 cal
mole deg 𝑋𝑋 4.19 x 107 ergs

cal
∆𝑇𝑇 = 2.58 𝑑𝑑𝑝𝑝𝑔𝑔
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2.11. Energy Equation
If a chemical system undergoes an infinitesimal reversible process between two

equilibrium states, the change of internal energy is

𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑆𝑆 − 𝑃𝑃𝑑𝑑𝑑𝑑

and (the first 𝑇𝑇𝑑𝑑𝑆𝑆 equation),

𝑇𝑇𝑑𝑑𝑆𝑆 = 𝐶𝐶𝑉𝑉 𝑑𝑑𝑇𝑇 + 𝑇𝑇
𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇 𝑉𝑉

𝑑𝑑𝑑𝑑

Combining both equations, we get

𝑑𝑑𝑑𝑑 = 𝐶𝐶𝑉𝑉 𝑑𝑑𝑇𝑇 + 𝑇𝑇
𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇 𝑉𝑉

− 𝑃𝑃 𝑑𝑑𝑑𝑑

in which 𝑑𝑑 is imagined as a function of 𝑇𝑇 and 𝑑𝑑. But

𝑑𝑑𝑑𝑑 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑 𝑉𝑉

𝑑𝑑𝑇𝑇 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉 𝑑𝑑

𝑑𝑑𝑑𝑑

and consequently, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉 𝑑𝑑

= 𝑇𝑇 𝜕𝜕𝑃𝑃
𝜕𝜕𝑑𝑑 𝑉𝑉

− 𝑃𝑃

The above equation, known as the energy equation, enables us to draw conclusions about

the internal energy of any chemical system whose equation of state is known.
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2.11. Energy Equation

1. Ideal Gas

𝑃𝑃 = 𝑛𝑛𝑅𝑅𝑑𝑑
𝑉𝑉
⇒ 𝜕𝜕𝑃𝑃

𝜕𝜕𝑑𝑑 𝑉𝑉
= 𝑛𝑛𝑅𝑅

𝑉𝑉

And 𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉 𝑑𝑑

= 𝑇𝑇 𝑛𝑛𝑅𝑅
𝑉𝑉
− 𝑃𝑃 = 0

Therefore U does not depend on V but is a function of T only. 

2. Van der Waals Gas (1 Mole)

𝑃𝑃 = 𝑅𝑅𝑑𝑑
𝑣𝑣−𝑏𝑏

– 𝑎𝑎
𝑣𝑣2

;
𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑 𝑉𝑉

= 𝑅𝑅
𝑣𝑣−𝑏𝑏′

And 𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉 𝑑𝑑

= 𝑇𝑇 𝑅𝑅
𝑣𝑣−𝑏𝑏

− 𝑅𝑅𝑑𝑑
𝑣𝑣−𝑏𝑏

+ 𝑎𝑎
𝑣𝑣2

= 𝑎𝑎
𝑣𝑣2

Consequently,

𝑑𝑑𝑑𝑑 = 𝐶𝐶𝑉𝑉 𝑑𝑑𝑇𝑇 + 𝑎𝑎
𝑣𝑣2
𝑑𝑑𝑑𝑑

and 𝑑𝑑 = ∫𝑖𝑖𝑣𝑣 𝑑𝑑𝑇𝑇 −
𝑎𝑎
𝑣𝑣

+ 𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑝𝑝.

It follows therefore, that the internal energy of a van der Waals gas increase as 

the volume increases, the temperature remaining constant.



Prof. J. K
. Baria

34

2.12. Difference in Heat Capacities.

Equating the first and second 𝑇𝑇𝑑𝑑𝑆𝑆 equation.

𝐶𝐶𝑃𝑃 𝑑𝑑𝑇𝑇 − 𝑇𝑇
𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝑃𝑃

𝑑𝑑𝑃𝑃 = 𝐶𝐶𝑉𝑉 𝑑𝑑𝑇𝑇 + 𝑇𝑇
𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇 𝑉𝑉

𝑑𝑑𝑑𝑑;

Solving for 𝑑𝑑𝑇𝑇,

𝑑𝑑𝑇𝑇 =
𝑑𝑑 𝜕𝜕𝑃𝑃

𝜕𝜕𝜕𝜕 𝑉𝑉
𝐶𝐶𝑃𝑃− 𝐶𝐶𝑉𝑉

𝑑𝑑𝑑𝑑 +
𝑑𝑑 𝜕𝜕𝑉𝑉

𝜕𝜕𝜕𝜕 𝑃𝑃
𝐶𝐶𝑃𝑃− 𝐶𝐶𝑉𝑉

𝑑𝑑𝑃𝑃 ; 𝐵𝐵𝑢𝑢𝑝𝑝 𝑑𝑑𝑇𝑇 = 𝜕𝜕𝑑𝑑
𝜕𝜕𝑉𝑉 𝑃𝑃

𝑑𝑑𝑑𝑑 + 𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃 𝑉𝑉

𝑑𝑑𝑃𝑃.

𝑇𝑇𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑑𝑑𝑖𝑖𝑖𝑖𝑝𝑝 𝜕𝜕𝑑𝑑
𝜕𝜕𝑉𝑉 𝑃𝑃

=
𝑑𝑑 𝜕𝜕𝑃𝑃

𝜕𝜕𝜕𝜕 𝑉𝑉
𝐶𝐶𝑃𝑃− 𝐶𝐶𝑉𝑉

𝑖𝑖𝐶𝐶𝑑𝑑 𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃 𝑉𝑉

=
𝑑𝑑 𝜕𝜕𝑉𝑉

𝜕𝜕𝜕𝜕 𝑃𝑃
𝐶𝐶𝑃𝑃− 𝐶𝐶𝑉𝑉

Both the above equations yield the result that

𝐶𝐶𝑃𝑃 − 𝐶𝐶𝑉𝑉 = −𝑇𝑇 𝜕𝜕𝑉𝑉
𝜕𝜕𝑑𝑑 𝑃𝑃

𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉 𝑉𝑉

𝑖𝑖𝑢𝑢𝑝𝑝 𝑤𝑤𝑝𝑝 𝑘𝑘𝐶𝐶𝑖𝑖𝑤𝑤 𝑝𝑝𝑖𝑖𝑖𝑝𝑝, 𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉 𝑉𝑉

= − 𝜕𝜕𝑉𝑉
𝜕𝜕𝑑𝑑 𝑃𝑃

𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉 𝑑𝑑

𝐶𝐶𝑃𝑃 − 𝐶𝐶𝑉𝑉 = −𝑇𝑇
𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝑃𝑃

2 𝜕𝜕𝑃𝑃
𝜕𝜕𝑑𝑑 𝑉𝑉
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2.12. Difference in Heat Capacities.
This is one of the most important equations of thermodynamics and shows that

1. Since (𝜕𝜕𝑃𝑃/𝜕𝜕𝑑𝑑)𝑑𝑑 is always negative for all known substances and (𝜕𝜕𝑃𝑃/𝜕𝜕𝑑𝑑)𝑃𝑃 must be positive, then

𝐶𝐶𝑃𝑃 − 𝐶𝐶𝑉𝑉 can never be negative, or 𝐶𝐶𝑃𝑃 can never be less than 𝐶𝐶𝑉𝑉 .

2. As T → 0, 𝐶𝐶𝑃𝑃 → 𝐶𝐶𝑉𝑉 or at the absolute zero the two heat capacities are equal.

3. 𝐶𝐶𝑃𝑃 = 𝐶𝐶𝑉𝑉 when (𝜕𝜕𝑑𝑑/𝜕𝜕𝑇𝑇)𝑃𝑃 = 0 For example, at 40C at which density of water is a maximum, 𝐶𝐶𝑃𝑃 = 𝐶𝐶𝑉𝑉 .

Laboratory measurements of the heat capacity of solids and liquids usually take place at constant

pressure and therefore yield values of CP. It would be extremely difficult to measure with any degree of

accuracy the Cv of a solid or liquid. Values of CV however, must be known for purposes of comparison

with theory. The equation for the difference in the heat capacities is very useful in calculating CV in

terms of CP and other measurable quantities. Remembering that

𝛽𝛽 = 1
𝑉𝑉

𝜕𝜕𝑉𝑉
𝜕𝜕𝑑𝑑 𝑃𝑃

And 𝑘𝑘 = − 1
𝑉𝑉

𝜕𝜕𝑉𝑉
𝜕𝜕𝑃𝑃 𝑑𝑑

We may write the equation in the form

𝑪𝑪𝑷𝑷 − 𝑪𝑪𝑽𝑽 =
𝑻𝑻𝑽𝑽 𝟏𝟏

𝑽𝑽
𝝏𝝏𝑽𝑽
𝝏𝝏𝑻𝑻 𝑷𝑷

𝟐𝟐

− 𝟏𝟏
𝑽𝑽

𝝏𝝏𝑽𝑽
𝝏𝝏𝑻𝑻 𝑻𝑻

𝑪𝑪𝑷𝑷 − 𝑪𝑪𝑽𝑽 =
𝑻𝑻𝑽𝑽 𝜷𝜷𝟐𝟐

𝒌𝒌
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2.12. Difference in Heat Capacities.
As an example of the use of the above equation let us calculate the molar heat capacity at constant

volume of mercury at 00C and 1 atm pressure. From experiment we have,

Cp = 6.69 cal/mole.deg

T = 273 deg

V = 14.72 cm3/mole

β = 181 x 10-6 deg-1,

k= 3.88 x 10-12 cm2/dyne

whence

𝐶𝐶𝑃𝑃 − 𝐶𝐶𝑉𝑉 =
273 deg x 14.72 cm2

mole 𝑋𝑋 (181)2 x 10−12 deg−2

3.88 x 10−12 cm2

dyne

𝐶𝐶𝑃𝑃 − 𝐶𝐶𝑉𝑉 = 0.809 cal
mole � deg

∴ 𝐶𝐶𝑉𝑉 = 6.69 – 0.809
cal

mole � deg = 5.88
cal

mole � deg

Finally, 𝛾𝛾 = 𝐶𝐶𝑃𝑃
𝐶𝐶𝑉𝑉

= 6.69
5.88

= 1.14
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2.13. Ratio of Heat Capacities.

The two 𝑇𝑇𝑑𝑑𝑆𝑆 equations are

𝑇𝑇𝑑𝑑𝑆𝑆 = 𝐶𝐶𝑃𝑃 𝑑𝑑𝑇𝑇 + 𝑇𝑇 𝜕𝜕𝑉𝑉
𝜕𝜕𝑑𝑑 𝑃𝑃

𝑑𝑑𝑃𝑃 and 𝑇𝑇𝑑𝑑𝑆𝑆 = 𝐶𝐶𝑉𝑉 𝑑𝑑𝑇𝑇 + 𝑇𝑇 𝜕𝜕𝑃𝑃
𝜕𝜕𝑑𝑑 𝑉𝑉

𝑑𝑑𝑑𝑑

At constant S,

𝐶𝐶𝑃𝑃 𝑑𝑑𝑇𝑇𝑑𝑑 = 𝑇𝑇 𝜕𝜕𝑉𝑉
𝜕𝜕𝑑𝑑 𝑃𝑃

𝑑𝑑𝑃𝑃𝑑𝑑 ; and 𝐶𝐶𝑉𝑉 𝑑𝑑𝑇𝑇𝑑𝑑 = −𝑇𝑇 𝜕𝜕𝑃𝑃
𝜕𝜕𝑑𝑑 𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑

Dividing

𝐶𝐶𝑃𝑃
𝐶𝐶𝑉𝑉

= −

𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝑃𝑃
𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇 𝑉𝑉

𝜕𝜕𝑃𝑃
𝜕𝜕𝑑𝑑 𝑑𝑑

But the quantity in square brackets is equal to − 𝜕𝜕𝑉𝑉
𝜕𝜕𝑑𝑑 𝑑𝑑

Therefore, 

𝐶𝐶𝑃𝑃
𝐶𝐶𝑉𝑉

= −
𝜕𝜕𝑃𝑃/𝜕𝜕𝑑𝑑 𝑑𝑑

𝜕𝜕𝑃𝑃/𝜕𝜕𝑑𝑑 𝑑𝑑
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2.13. Ratio of Heat Capacities.

The adiabatic compressibility is defined as the reciprocal of the adiabatic bulk

module or

𝑘𝑘𝑑𝑑 = − 1
𝑉𝑉

𝜕𝜕𝑉𝑉
𝜕𝜕𝑃𝑃 𝑑𝑑

; and, as usual    𝑘𝑘 = − 1
𝑉𝑉

𝜕𝜕𝑉𝑉
𝜕𝜕𝑃𝑃 𝑑𝑑

;

We have therefore,

𝐶𝐶𝑝𝑝
𝐶𝐶𝑉𝑉

= 𝛾𝛾 =
𝑘𝑘
𝑘𝑘𝑠𝑠

From which, 𝑘𝑘𝑠𝑠 may be calculated. In the case of mercury at 00C and 1 atm

pressure. 𝛾𝛾 = 1.14, and 𝑘𝑘 = 3.88 x 10−12 cm2

dyne

Whence, 𝑘𝑘𝑠𝑠 =
3.88 x 10−12 cm

2

dyne

1.14
= 3.14 x 10−12 cm2

dyne
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2.14. Expansivity

The volume expansivity of a gas may be calculated from the equation of state or more simply from any

empiric equation representing the relation between volume and temperature at constant pressure.

The volume expansivity of liquids and solids is usually calculated from an empirical equation

representing the relation between density and temperature at constant pressure. Since the specific

volume v is the reciprocal of the density ρ, it follows that

β =
1
𝜌𝜌

𝜕𝜕𝜌𝜌
𝜕𝜕𝑇𝑇

In cases where it is inconvenient or inadvisable to measure the density of a solid over a wide

temperature range, the volume expansivity may be calculated from the linear expansivity. Suppose that

the three rectangular dimensions of a solid are L1, L2, and L3. Then

V = L1L2L3

𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 = 𝐿𝐿2 𝐿𝐿3

𝜕𝜕𝐿𝐿1
𝜕𝜕𝑇𝑇 + 𝐿𝐿1 𝐿𝐿3

𝜕𝜕𝐿𝐿2
𝜕𝜕𝑇𝑇 + 𝐿𝐿1 𝐿𝐿2

𝜕𝜕𝐿𝐿3
𝜕𝜕𝑇𝑇 ,

1
𝑑𝑑
𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 =

1
𝐿𝐿1
𝜕𝜕𝐿𝐿1
𝜕𝜕𝑇𝑇 +

1
𝐿𝐿2
𝜕𝜕𝐿𝐿2
𝜕𝜕𝑇𝑇 +

1
𝐿𝐿3
𝜕𝜕𝐿𝐿3
𝜕𝜕𝑇𝑇

And β = α1 + α2 + α3

Where α1, α2 and α3 are the linear expsnsivities along the 3 directions. If the solid is isotropic, then,

α1 + α2 + α3 = α

β = 3α
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2.14. Expansivity

There are many methods of measuring the linear expansitivity of solids. If the solid can be

obtained in the form of a bar, the simplest method is to make two scratches on the bar and

place it horizontally in a temperature bath. The scratches are viewed through separate

microscopes, which are mounted on a rigid stand kept at constant temperature. If a change in

length L – L0 is produced by a change in the temperature t – t0, then.

α =
1
𝐿𝐿0

𝐿𝐿 − 𝐿𝐿0
𝑝𝑝 − 𝐿𝐿0

Where α, the average coefficient, is very nearly equal to the true coefficient when t – t0 is

small.

If the linear expansivity of fused quartz is measured by this method, then then

expansivity of other materials may be obtained by measuring the expansion relative to quartz.

An instrument used for this purpose is the Abbe-Pulfrich dilatometer, depicted in fig 2.5 (a).

The material B, whose upper surface is plane and well polished, is placed inside a quartz ring

A, whose height is a trifle greater than the material. A cover plate C is placed on the quartz

ring, and interference fringes are obtained as a result of reflections from the two surfaces

close together. The device is made so that the air space between these two surfaces is wedge

shaped with an angle that remains constant as both the quartz ring and the material expand.
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2.14. Expansivity

Fig. 2.5 (a) Abbe-Pulfrich dilatometer, (b) Fizeau dilatometer as

improved by Merrit

If n fringes travel across the field of view while the temperature changes

from t0 to t, then the optical path difference has changes by nλ, where λ is

the wavelength of the light, and the thickness of the air space has changed

by nλ/2. If L is the length of the specimen and LQ that of the quartz, while

L0 is the original length of both the specimen and the quartz ring, then

𝐿𝐿𝑑𝑑 − 𝐿𝐿
𝐿𝐿0

=
𝐶𝐶
2𝐿𝐿0

If, therefore, nλ/2L0 is plotted against t and the slope of the resulting 

curve is taken at various temperatures, the difference in the expansivities

is obtained. Thus 

αQ - α = 𝑑𝑑
𝑑𝑑𝑑𝑑

𝑛𝑛
2𝐿𝐿0

Another interferometric dilatometer has been developed for high precision work. This

experimental arrangement, first suggested by Fizeau and later developed by Merrit, Austin,

Nix, and MacNair at the Bell Telephone Laboratories is shown in fig. 2.5 (b). Three samples of

the material to be studied, B, are cut in the shape of small pyramids a few millimeters high

and are used to separate two quartz plates A and C, so that the air space between the plates

is wedge shaped. Interference fringes are produced by reflections from the upper surface of

A and the lower surface of C, and as the temperature is changed these fringes move across

the field of view.
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2.14. Expansivity

A small segment of the lower surface of plate A is made smooth, so that interference fringes may be

produced by reflections from the upper and lower surfaces of this part of the plate. As the

temperature is changed, these fringes also move because of the expansion and changing index of

refraction of plate A. By previous calibration the number of these fringes that move may be used to

determine the temperature. This part of the apparatus therefore acts as a refraction thermometer. The

system is immersed in a specially designed thermostat whose temperature is varied very slowly in a

period of as much as 70 hrs., during this time both fringe systems are photographed at regular

intervals by an automatically operated motion picture camera. As in the case of the Pulfrich

dilatometer, the linear expansivity is

α = 𝑑𝑑
𝑑𝑑𝑑𝑑

𝑛𝑛
2𝐿𝐿0

In order to avoid the delay involved in photographic processing the National Bureau of Standards has

developed a photoelectric interferometer in which the movement of interference fringes is detected

by a photomultiplier tube and the number of fringes is automatically plotted on a recorder against the

measured temperature of the specimen. Thus, all hand operations are eliminated and the data are

presented on a chart in a form suitable for immediate determination of expansivities.

In general the volume expansivity of all materials depends on both the temperature and the pressure.
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Temperature Variation of β of ICE and of water

2.14. Expansivity

Temp. 0K Volume

Expansivity, 

10-6 deg-1

Temp. 0K Volume 

Expansivity 

10-6deg-1

0 0 279 +32

23 -18.3 281 +61

73 +2.4 283 +89

123 +50.4 293 +208

173 +102 303 +304

223 +137 313 +390

273 (solid) +158 323 +465

273 (liquid) -67 333 +522

275 -31 343 +586

277 +1 353 +646
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2.15. Compressibility

The isothermal compressibility of a gas may be calculated from an

empiric equation expressing the dependence of V upon P at

constant temperature. In the case of solids and liquids the change in

volume (or the change in one dimension) produced by a known

change in pressure is measured at constant temperature and the

average compressibility calculated from the expression.

𝑘𝑘 = − 1
𝑉𝑉0

𝑉𝑉− 𝑉𝑉0
𝑃𝑃− 𝑃𝑃0

If the change in pressure is not too large, 𝑘𝑘 is approximately the

true isothermal compressibility.

In the apparatus known as a piezometer used by Bridgman for solids,

a bar of the solid is contained in a strong iron container filled with

oil. The pressure of the oil is varied by a hydrostatic press, and the

change in length of the solid relative to that of the iron container is

measured by the motion it produces in a high resistance manganin

wire, which moves past a contact G, as shown in fig 2.6 . The

resistance of the part of the wire between the end F and the fixed

contact G is measured with the aid of a potentiometer. The quantity

that is measured is the linear compressibility, i.e.

Fig. 2.6. Bridgman piezometer.
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2.15. Compressibility

𝛿𝛿 = −
1
𝐿𝐿

𝜕𝜕𝐿𝐿
𝜕𝜕𝑃𝑃

If the three rectangular dimensions of the solid are L1, L2 and L3, then

V = L1 L2 L3

𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃

= 𝐿𝐿2 𝐿𝐿3
𝜕𝜕𝐿𝐿1
𝜕𝜕𝑃𝑃

+ 𝐿𝐿1 𝐿𝐿3
𝜕𝜕𝐿𝐿2
𝜕𝜕𝑃𝑃

+ 𝐿𝐿1𝐿𝐿2
𝜕𝜕𝐿𝐿3
𝜕𝜕𝑃𝑃

1
𝑑𝑑

𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃 =

1
𝐿𝐿1
𝜕𝜕𝐿𝐿1
𝜕𝜕𝑃𝑃 +

1
𝐿𝐿2
𝜕𝜕𝐿𝐿2
𝜕𝜕𝑃𝑃 +

1
𝐿𝐿3

𝜕𝜕𝐿𝐿3
𝜕𝜕𝑃𝑃1

And 𝑘𝑘 = − 1
𝑉𝑉
𝜕𝜕𝑉𝑉
𝜕𝜕𝑃𝑃

= 𝛿𝛿1 + 𝛿𝛿2 + 𝛿𝛿3

If the solid is isotropic and the 𝛿𝛿’s are equal and 𝑘𝑘 = 3𝛿𝛿

In general, the isothermal compressibility of all substances is a function of 

both pressure and temperature. 
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2.16. Joule Kelvin Effect (Porous plug Experiment).

In the porous plug experiment a gas is made to undergo a continuous throttling process. By means of a pump a

constant pressure is maintained on one side of a porous plug and a constant lower pressure on the other side.

In the original experiments of Joule and Kelvin a cotton plug was used and the gas flowed through it parallel to

the axis of the pipe. In modern measurements a cup of a strong porous material capable of withstanding a large

force allows the gas to seep through in a radial direction. Rigid precautions are taken to provide adequate

thermal insulation for the plug and the portion of the pipe near the plug. Suitable manometers and

thermometers are used to measure the pressure and temperature of the gas on both sides of the plug.

The experiment is performed in the following way: The pressure and temperature on the high

pressure side of the plug Pi and Ti are chosen arbitrarily. The pressure on the other side of the plug Pf is then

set at any value less than Pi, and the temperature of the gas Tf is measured. Pi and Ti are kept the same, and Pf is

changed to another value and the corresponding Tf is measured. This is done for a number of different values

of Pf, the corresponding Tf being measured in each case. Pf is the independent variable of the experiment and Tf

the dependent variable. The results provide a set of discrete point on T – P diagram, one point being PiTi and

the others being the various Pf’s and Tf’S indicated in fig. 2.7. by numbers (1) to (7). Although the points shown

in the figure do not refer to any particular gas, they are typical of most gases. It can be seen that, if a throttling

process takes place between the states PiTi and PfTf (3), there is a rise of temperature. Between PiTi and PfTf

(7), however, there is a drop of temperature. In general the temperature change of a gas upon seeping through

a porous plug depends on the three quantities PiTi and Pf and may be an increase or a decrease or there may be

no change whatever.
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2.16. Joule Kelvin Effect (Porous plug Experiment).
According to the principle of enthalpy the eight points plotted in fig. 2.7

represents equilibrium states of some constant mass of the gas, say, 1 gm,

at which the gas has the same enthalpy. All equilibrium states of the gas

corresponding to this enthalpy must lie on some curve, and it is

reasonable to assume that this curve can be obtained by drawing a

smooth curve through the discrete points. Such a curve is called an

isenthalpic curve. Isenthalpic curve is not the graph of a throttling

process. No such graph can be drawn because in any throttling process

the intermediate states traversed by a gas cannot be described by means

of thermodynamic coordinates. An isenthalpic curve is the locus of all

points representing equilibrium states of the same enthalpy. The porous

plug experiment is performed to provide a few of these points, the rest

being obtained by interpolation.
Fig. 2.7. Isenthalpic state of gas.

The temperature on the high pressure side Ti is now changed to another value, Pi being

kept the same. Pf is again varied and the corresponding Tf’s measured. Upon plotting

the new PiTi and the new Pf’s and Tf’s, another discrete set of points is obtained, which

determines another isenthalpic curve corresponding to a different enthalpy. In this way

a series of isenthalpic curves is obtained. Such a series is shown in fig. 2.8. For

nitrogen.
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2.16. Joule Kelvin Effect (Porous plug Experiment).

Fig. 2.8. Isenthalpic curve and inversion curve for

nitrogen. The encircled point is the critical point

(After Roebuck)

The numerical value of the slope of an isenthalpic curve on a

T-P diagram at any point is called the Joule – Kelvin co-

efficient and will be denoted by µ. Thus,

𝜇𝜇 =
𝜕𝜕𝑇𝑇
𝜕𝜕𝑃𝑃 𝑑𝑑

The locus of all points at which the Joule Kelvin coefficient is

zero. i.e. the locus of the maxima of the isenthalpic curves is

known as the inversion curve and is shown in fig. 14.2 as a

dotted closed curve. The region inside the inversion curve

where µ is positive is called the region whereas outside,

where µ is negative is the region of heating.

If a vertical line is drawn at some arbitrarily chosen pressure, it will intersect the

isenthalpic curves at a number of points at which µ may be obtained by measuring the

slopes of the isenthalpics at these points. We should then have a set of values of µ referring

to the same pressure but to different temperature. This can then be repeated at another

pressure. The data in Table 14.1 were obtained in this way from very careful measurements

by Roebuck and Osterberg.
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2.16. Joule Kelvin Effect (Porous plug Experiment).
Table 4.1 Joule Kelvin Coefficients and Heat Capacities

t, 0C Helium at 1 atm Nitrogen at 1 atm

Cp, cal/gm. deg µ, deg/atm cp, cal/gm.deg µ, deg/atm

300

200

100

75

50

25

0

-100

-155

-180

1.271

1.264

1.257

1.255

1.254

12.52

1.250

1.243

1.239

1.237

-0.0597

-0.0641

-0.0638

-0.0635

-0.0631

-0.0624

-0.0616

-0.0584

-0.0503

-0.0412

0.2501

0.2490

0.2476

0.2472

0.2469

0.2467

0.2466

0.2466

0.2473

0.2480

+0.0139

+0.0558

+0.1291

+0.1555

+0.1854

+0.2216

+0.2655

+0.6487

+1.449

+2.391
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2.16. Joule Kelvin Effect (Porous plug Experiment).

The slope of an isenthalpic curve on a T-P diagram, i.e. the Joule Kelvin Coefficient is

Fig. 2.8 Isenthalpic curves and inversion curves for nitrogen. The encircled point is the critical point.

𝜇𝜇 =
𝜕𝜕𝑇𝑇
𝜕𝜕𝑃𝑃

𝑑𝑑

In general, the difference in specific enthalpy between two neighboring equilibrium states is

𝑑𝑑𝐻𝐻 = 𝑇𝑇𝑑𝑑𝑆𝑆 + 𝑑𝑑𝑑𝑑𝑃𝑃

and, according to the second 𝑇𝑇𝑑𝑑𝑆𝑆 equation,

𝑇𝑇𝑑𝑑𝑆𝑆 = 𝐶𝐶𝑃𝑃𝑑𝑑𝑇𝑇 − 𝑇𝑇
𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇

𝑃𝑃
𝑑𝑑𝑃𝑃

Substituting for 𝑇𝑇𝑑𝑑𝑆𝑆, we get

𝑑𝑑𝐻𝐻 = 𝐶𝐶𝑃𝑃𝑑𝑑𝑇𝑇 − 𝑇𝑇
𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇

𝑃𝑃
− 𝑑𝑑 𝑑𝑑𝑃𝑃

or

𝑑𝑑𝑇𝑇 =
1
𝐶𝐶𝑃𝑃

𝑇𝑇
𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇

𝑃𝑃
− 𝑑𝑑 𝑑𝑑𝑃𝑃 +

1
𝐶𝐶𝑃𝑃
𝑑𝑑𝐻𝐻
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2.16. Joule Kelvin Effect (Porous plug Experiment).

Regarding T as a function of P and H,

𝑑𝑑𝑇𝑇 =
𝜕𝜕𝑇𝑇
𝜕𝜕𝑃𝑃 𝑑𝑑

𝑑𝑑𝑃𝑃 +
𝜕𝜕𝑇𝑇
𝜕𝜕𝑖 𝑃𝑃

𝑑𝑑𝑖

whence, since µ = 𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃 𝑑𝑑,

𝜇𝜇 = 1
𝐶𝐶𝑃𝑃

𝑇𝑇 𝜕𝜕𝑉𝑉
𝜕𝜕𝑑𝑑 𝑃𝑃

− 𝑑𝑑

This is the thermodynamic equation for the Joule – Kelvin coefficient. It is

evident that, for an ideal gas

𝜇𝜇 = 1
𝐶𝐶𝑃𝑃

𝑇𝑇 𝑅𝑅
𝑃𝑃
− 𝑑𝑑 = 0

The most important application of the Joule – Kelvin effect is in the

liquefaction of gases.
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